ESR of $\mathbf{M o}^{\text {j+ }}$ in YVO_{4} : A Substitutional Off-Center Ion*

J. H. PIFER and S. ZIEMSKI
Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903
M. GREENBLATT
Chemistry Department, Rutgers University, New Brunswick, New Jersey 08903
and B.M. WANKLYN
Clarendon Laboratory, Oxford University, Oxford, United Kingdom

Received May 12, 1982

Abstract

The electron spin resonance of MoO_{4}^{-3} in YVO_{4} was studied at 4.2 K . The Mo^{5+} has a $d_{x y}$ ground state and is shown to move off the $\mathrm{V}^{\text {s+ }}$ substitutional site of $D_{2 d}$ symmetry to one of four crystallographically equivalent off-center sites of C_{2} symmetry, located in the $\langle 110\rangle$ direction. The Mo^{5+} spectrum is compared to Cr^{5+} in YVO_{4} and YPO_{4} and V^{4+} in ZrSiO_{4} and other zircon-like crystals which show dynamic effects that we interpret as tunneling or thermally activated hopping between off-center sites.

Introduction

We have recently reported studies of electron spin resonance (ESR) and polarized optical absorption spectra of V^{4+} in single crystals of the isostructural series of zircon-type compounds: $\mathrm{ZrSiO}_{4}, \mathrm{HfSiO}_{4}$, ThSiO_{4}, and ThGeO_{4} (1). The zircon structure is made up of a chain of alternating edge-sharing SiO_{4} tetrahedra and ZrO_{8} dodecahedra parallel to the c crystal axis. Both the tetrahedral and dodecahedral sites of zircon have $D_{2 d}$ symmetry and a simple

[^0]crystal field analysis predicts a $d_{x y}$ ground state for the d^{1} electron of V^{4+} in either of these sites (2). The ESR data for V^{4+} in all four zircon analogs indicate a $d_{x y}$ ground state. However, the principal values of g and A in ZrSiO_{4} and HfSiO_{4} are anomalous and significantly different from those in ThSiO_{4} and ThGeO_{4}. The optical spectra indicate that V^{4+} enters the tetrahedral rather than the dodecahedral site. The spectra are all similar except for the occurrence of strong $D_{2 d}$-forbidden transitions in ZrSiO_{4} and HfSiO_{4}. We showed that the optical and ESR data in these two crystals could not be accounted for by conventional crystal field theory, and that the symmetry and parameter restrictions imposed by the dynamic Jahn-Teller effect (DITE) theory
precluded analysis of the data in terms of DJTE (3-5). We tentatively attributed the observed anomalies to dynamic local distortions of the VO_{4} tetrahedron of unknown origin.

Similar anomalies were found in the ESR of Cr^{5+} in YPO_{4} and $\mathrm{YVO}_{4}(6)$, another case of a d^{1} ion in the tetrahedral site of a zircontype crystal. In YPO_{4} and YVO_{4} the PO_{4} and VO_{4} tetrahedra are distorted to $D_{2 d}$ symmetry by a stretching motion along the c crystallographic direction (as is SiO_{4} in ZrSiO_{4}) and a crystal field model predicts a $d_{x y}$ ground state for the d^{1} electron on CrO_{4}^{3-} in these hosts. The ESR results indicated a $d_{z^{2}}$ ground state. The inversion was attributed to covalency and to interaction with the two neighboring yttrium ions above and below the Cr^{3+} ion along the crystal c axis which shows up as a superhyperfine structure in the ESR. We concluded that our inability to fit the observed g values to crystal field equations assuming $D_{2 d}$ (or lower) symmetry is due to a spontaneous local dynamic distortion of the CrO_{4} tetrahedron. The observed field- and orien-tation-dependent linewidth of the superhyperfine lines was suggested as evidence of this motion.

The object of this study was to clarify the observed vibrational anomalies of transition metal ions in zircon-type crystals and to establish the origin of such dynamic distortions. We present a single-crystal ESR study of Mo^{5+} substituted for V^{5+} in YVO_{4}. We find that the ESR results are anomalous but there is no evidence for dynamic motion at 4.2 K . Instead the MoO_{4} tetrahedron has several crystallographically equivalent spectra of lower symmetry than would be expected from the symmetry of the VO_{4} site. Our interpretation is that the Mo^{5+} has moved off the normal lattice site in the $\langle 110\rangle$ direction to one of four nearby crystallographically equivalent lower symmetry sites. We suggest that the dynamic effects observed in other zircon analogs is due to
motion of the paramagnetic ions between these off-center sites.

Experimental

YVO_{4} crystals doped with the Mo^{3+} were grown from $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ flux as previously described (7). The molybdenum concentration is less than $0.1 \mathrm{~mole} \%$. The color of the crystals was olive green. The ESR spectra showed that Cr^{5+} impurities were also present in about the same concentration as the Mo^{5+}. The electron spin resonance spectra were taken with an X-band coherent superheterodyne spectrometer operating in the absorption derivative mode using field modulation. The klystron frequency was $\sim 9 \mathrm{GHz}$. No ESR was observed at room temperature or liquid nitrogen temperature, but at 4.2 K sharp resonances were detected. The crystals were oriented by X-ray diffraction techniques and the ESR spectra were recorded as the magnetic field was rotated in 10° intervals about the c and a tetragonal axes.

Crystal Structure

YVO_{4} has the tetragonal zircon structure ($I 4_{1} / a m d$) with four molecules per unit cell. The VO_{4} tetrahedra are strongly distorted to $D_{2 d}$ symmetry by a stretching motion along the c axis such that the two angles bisected by the c axis $[\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(2)]$ are smaller and the remaining four angles $[\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(3)]$ are larger than the tetrahedral angle (109.4°) (8). The yttrium site is surrounded by eight oxygens at the vertices of a tetragonal dodecahedron with site symmetry $D_{2 d}$. The four VO_{4} tetrahedra in the unit cell are magnetically equivalent as are the YO_{8} dodecahedra.

Results and Preliminary Analysis

Molybdenum has two isotopes with nuclear spin $I=5 / 2$ - ${ }^{95} \mathrm{Mo}$ (15.8% abundant)
and ${ }^{97} \mathrm{Mo}$ (9.6% abundant)-in addition to the even $I=0$ isotopes. The two $I=5 / 2$ isotopes have almost identical gyromagnetic ratios. Thus the ESR signature of a paramagnetic molybdenum ion is an intense central line accompanied by six weak equally spaced hyperfine lines having $\sim 1 / 25$ the intensity of the central line.

The observed spectrum of Mo in YVO_{4} consists of two intense, narrow ($\simeq 2 \mathrm{G}$) central lines with accompanying sets of hyperfine lines. No superhyperfine iines are observed. The two sets of lines coalesce when H is along $\langle 100\rangle$ or $\langle 001\rangle$. When H is rotated about the c crystal axis the two sets of lines have the same variation, but the spectra are shifted by 180°. Thus we conclude that the Mo occupies at least two crystallographically equivalent sites that are magnetically nonequivalent. The spectrum can be fit to the spin Hamiltonian

$$
\begin{aligned}
\mathscr{H}= & g_{x} S_{x} H_{x}+g_{y} S_{y} H_{y}+g_{z} S_{z} H_{z} \\
& +A_{x} I_{x} S_{x}+A_{y} I_{y} S_{y}+A_{z} I_{z} S_{z} .
\end{aligned}
$$

Figure 1 shows the angular variation of the g values of the central line for rotation of the magnetic field about the a and c axes. The solid lines are a three-parameter fit to

$$
\begin{equation*}
g^{2}=g_{x}^{2} l^{2}+g_{y}^{2} m^{2}+g_{z}^{2} n^{2}, \tag{2}
\end{equation*}
$$

where l, m, n are direction cosines of H with respect to the principal axes of the g tensor. g_{z} lies along $\langle 001\rangle$ and g_{x} and g_{y} are in the $a b$ plane at an angle of $45^{\circ} \pm 1^{\circ}$ from the a axis. The hyperfine splittings were fit to a similar expression (2) for $g A$. It was difficult to accurately measure the hyperfine splittings due to overlap with the $\mathrm{Cr}^{\text {s }}$ spectrum. But within the rather considerable experimental error the principal axes of A are parallel to those of g. The results of the fits are shown in Table I.

Discussion

The observed ESR spectrum is consistent with $\mathrm{Mo}^{5+}\left(4 d^{1}\right)$ rather than $\mathrm{Mo}^{3+}\left(4 d^{3}\right)$

Fig. 1. Angular dependence of the g factor of the ESR signal of Mo^{5+} in YVO_{4} as the magnetic field is rotated about the c and a crystal axes.

TABLE I
Principal g and A Values of MoO_{4}^{3-} in YVO_{4}

g_{x}	1.9783 ± 0.0005
g_{y}	1.9160 ± 0.0005
g_{z}	1.8410 ± 0.005
$\left\|A_{x}\right\|\left(10^{-4} \mathrm{~cm}^{-1}\right)$	18.7 ± 0.8
$\left\|A_{y}\right\|\left(10^{-4} \mathrm{~cm}^{-1}\right)$	16.7 ± 0.8
$\left\|A_{z}\right\|\left(10^{-4} \mathrm{~cm}^{-1}\right)$	24.2 ± 0.3
Angle A_{z} to g_{z}	$0 \pm 5^{\circ}$

(9), so we assume that Mo substitutionally replaces V^{5+} in YVO_{4} rather than Y^{3+}. This is to be expected since YMoO_{4} has been prepared (10) and has the sheelite structure which is closely related to zircon.

The energy levels of the d^{1} electron on Mo^{5+} in MoO_{4}^{3-} are primarily determined by the crystal field of the oxygen tetrahedron which reduces the initial fivefold degeneracy of d orbitals to a ground-state doublet E state and a triplet T_{2} excited state raised above E by an energy of $\sim 10^{4} \mathrm{~cm}^{-1}$ for T_{d} symmetry.
Distortion of the tetrahedron to $D_{2 d}$ symmetry splits both the doublet and triplet states as shown in Fig. 2. The ordering of the energy levels varies with the nature of the $D_{2 d}$ distortion (l). In YVO_{4} the substitutional MoO_{4}^{3-} tetrahedron is expected to be strongly stretched along the c crystal axis, predicting $d_{x y}$ as the ground state. ESR can easily distinguish between a $d_{z^{2}}\left(A_{1}\right)$ or $d_{x y}$ $\left(B_{2}\right)$ ground state since crystal field analysis (2) predicts $g_{z}<g_{x}, g_{y}$ and $\left|A_{z}\right|>\left|A_{x}\right|,\left|A_{y}\right|$ for a $d_{x y}$ ground state, with the converse holding for $d_{z^{2}}$. For $D_{2 d}$ symmetry, the g and A tensors must be axial. The ESR parameters of Mo^{5+} in YVO_{4} (Table I) indicate a $d_{x y}$ ground state. However, there is no axial symmetry of the electric axis. In addition we see two symmetry-related spectra, whereas all four VO_{4} tetrahedra in the unit cell of YVO_{4} are magneticalily equivalent. We interpret this to mean that the $\mathbf{M o}^{\text {i+ }}$ has moved off the V^{5+} site to a nearby site of
lower symmetry. Some relaxation of the oxygen cage is also to be expected.

We can deduce the direction of motion from the symmetry of ESR spectrum. Motion in an arbitrary direction would produce four magnetically inequivalent sites. But only two spectra are seen. So the motion must be in a high-symmetry direction. Motion along the $\langle 100\rangle,\langle 010\rangle$, or $\langle 001\rangle$ directions can be eliminated since then the complex would retain at least one of the two mirror planes ($a c$ and $b c$) that characterize $D_{2 d}$ symmetry. Then if g_{x} makes a 45° angle with the a axes, the mirror symmetry requires $g_{x}=g_{y}$, which is not observed. Motion along (110) is the only direction consistent with the observed spectrum. There are four symmetry-related sites for a (110) displacement but only two are magnetically inequivalent.

For $\langle 110\rangle$ motion the MoO_{4} complex retains C_{2} symmetry with the twofold symmetry axis along the direction of motion. In order to make a crystal field analysis of the data we use crystal field equations we have previously given ($/ 1, I 2$) for MnO_{4}^{2-} in $\mathrm{K}_{2} \mathrm{SO}_{4}$. This analysis was for a $d_{x y}$ ground state in C_{s} symmetry. However, it can be adopted to C_{2} symmetry without change since in both C_{s} and C_{2} the states of $d_{x y}$, $d_{x^{2}-y^{2}}$, and $d_{z^{2}}$ fall in the same irreducible representation (A^{\prime} and A, respectively), while $d_{y z}$ and $d_{x z}$ fall in another ($A^{\prime \prime}$ and B). Thus for either symmetry we can take the

Fig. 2. Ordering and qualitative splittings of the energy levels of a d electron in \propto distorted tetrahedral crystal field of $D_{2 a}$ and C_{2} symmetry. The vertical scale is arbitrary.
doublet states to be

$$
\begin{gather*}
\psi_{x y}=e d_{x y}+f d_{y z} \tag{3}\\
\psi_{z^{2}}=a d_{z^{2}}+b d_{x^{2} y^{2}}+c d_{x z} \tag{4}
\end{gather*}
$$

where $a, e \sim 1$ and $b, c, f \ll 1$. We can then use the crystal field equations to relate the experimental principal values of the g and A tensors to the nine parameters:

$$
\begin{gathered}
\xi /\left(E_{y z}-E_{x y}\right), \xi /\left(E_{z^{2}}-E_{x y}\right), \\
\xi /\left(E_{x z}-E_{x y}\right), \xi /\left(E_{x^{2}-y^{2}}-E_{x y}\right) . \quad b, c, f
\end{gathered}
$$

P and K, where ξ is the spin orbit coupling constant, K is the isotropic Fermi contact term, and $P=g_{0} g_{N} \beta_{e} \beta_{N}<r^{-3}>$ av. We choose $c=0$, which amounts to rotating the wavefunction axes about the twofold axis. Our hyperfine data, although not very accurate, are consistent with A_{z} being parallel to g_{z}. This implies $f=0$. We have only six pieces of data so our fit can only yield the product $b \xi /\left(E_{z^{2}}-E_{x y}\right)$. The results are given in Table II. The errors given in the table are obtained from the fitting program by individually varying the input parameters from Table I by their estimated errors. The large error in the product $b \xi /\left(E_{z^{2}}-\right.$ $E_{x y}$) arises because the fit is extremely sensitive to the difference $A_{x}-A_{y}$ which we cannot measure accurately. The fit indicates a very large splitting of the triplet states with an ordering (Fig. 2).

$$
E_{x z}>E_{x^{2}-y^{2}}>\mathrm{E}_{y z} .
$$

These splittings are determined from our measured g values and thus are not subject

TABLE II
Crystal Field Parameters for Mo ${ }^{\text {I }}$ in
YVO_{4} YVO_{4}

$b \xi /\left(E_{z^{2}}-E_{x y}\right)$	0.012 ± 0.010
$\xi /\left(E_{x z}-E_{x y}\right)$	0.011 ± 0.001
$\xi /\left(E_{x^{2}-y^{2}}-E_{x y}\right)$	0.020 ± 0.001
$\xi /\left(E_{y z}-E_{x y}\right)$	0.045 ± 0.001
$P\left(\times 10^{-4} \mathrm{~cm}^{-1}\right)$	-42.0 ± 0.5
$K\left(\times 10^{-4} \mathrm{~cm}^{-1}\right)$	7.5 ± 0.4

to the uncertainty arising from the hyperfine measurements. If we assume $\xi \sim 270$ cm^{-1} as previously observed (13) for $\mathrm{Mo}^{\mathbf{j +}}$, we find $E_{x z} \simeq 24,500, E_{x^{2}-y^{2}} \simeq 13,500$, and $E_{y z} \simeq 6000 \mathrm{~cm}^{-1}$. The energy spacing for $d_{x^{2}-y^{2}}$ is reasonable and consistent with Mo^{3+} in tetrahedral symmetry in other hosts (13). However, the very large splitting of $d_{x z}$ and $d_{y z}$, which are degenerate in $D_{2 d}$ symmetry, is surprising and should be checked by optical absorption measurements.

It is interesting to compare Cr^{5+} in $\mathrm{YVO}_{4}^{(6)}$ with Mo^{j+}. The Cr^{j+} has a $d_{z^{2}}$ ground state, which is presumably stabilized by interaction with the two neighboring Y ions above and below it on the c axis. This interaction clearly shows up as a superhyerfine splitting of the Cr^{-+}ESR spectrum. Only a single temperature-independent, axially symmetric spectrum is seen. But for rotation about the c axis the resolution of the superhyperfine splitting varies with angle, being poorest in the $\langle 110\rangle$ direction. We suggest that this is evidence for tunneling motion between off-center sites with the motion averaging g_{x} and g_{y} to give an axial g tensor. Since the ground state and ion size are different for Cr^{5+} and for Mo^{5+}, the Cr^{5+} might move to some other off-center sites rather than the $\langle 110\rangle$ sites. But the poor resolution of the superhyperfine lines in the (110) direction strongly suggests that the motion is the same in Cr^{5+} as in Mo^{3+}. Superhyperfine structure is not seen for Mo^{5+} because for a $d_{x y}$ ground state the electron charge density does not point in the direction of the Y^{3+} ions.

The question of why Cr^{5+} has a $d_{z^{2}}$ ground state and Mo^{5+} a $d_{x y}$ is not easily answered. Cr^{3+} is a slightly smaller ion than Mo^{3+}. But Cr^{3+} has a $d_{z^{2}}$ ground state in both YPO_{4} and YVO_{4} and P^{5+} is only $\sim 60 \%$ the size of V^{5+}. So the size of the impurity ion relative to the ion it replaces does not seem to explain the difference.

There are several other systems where
off-center motion of substitutional impurities has been reported. Shechter et al. (14) have interpreted anomalies in the Mössbauer spectrum of ${ }^{57} \mathrm{Co}$-doped ThO_{2} in terms of motion of the daughter Fe^{2+} in a "wine bottle"-shaped potential centered at the thorium site. In this case the Fe^{2+} is surrounded by a cube of eight O^{2-} ions.
Li^{+}in KCl (and in many analog systems such as $\mathrm{RbCl}: \mathrm{Ag}^{+}, \mathrm{CSF}: \mathrm{Na}^{+}$, and $\mathrm{KCl}: \mathrm{Cu}^{+}$) has been extensively studied (15) and shown conclusively (16) to move off the octahedrally coordinated K^{+}site along the $\langle 111\rangle$ crystal directions. The Li^{+} does not freeze in a particular potential minima but tunnels between the eight (111) sites. Calculations (16) indicate that there are secondary potential minima along the $\langle 110\rangle$ and $\langle 100\rangle$ directions.
As far as we know $\mathrm{YVO}_{4}: \mathrm{Mo}^{5+}$ is the first example where the potential minima are deep enough so that the ion does not tunnel or thermally hop between sites at 4.2 K . In this case freezing may be possible due to the lower symmetry of the V site compared to the K^{+}site in KCl. Calculations of the equilibrium positions would be of interest not only because of the different coordinations but also because the bonding is highly covalent rather than ionic.

Acknowledgments

This work received support from the National Science Foundation under Grant DMR-78-08554 and the Research Council, Rutgers University, New Brunswick, N.J.

References

I. S. DeGregorio, M. Greenblatt, J. H. Pifer, and M. D. Sturge, J. Chem. Phys. 76, 2931 (1982).
2. A. Abragam and B. Bleaney, "Electron Paramagnetic Resonance of Transition Ions," Oxford Univ. Press (Clarendon), London/New York (1970).
3. M. D. Sturge, "Advances in Solid State Physics" (F. Seitz, D. Turnbull, and H. Ehrenreich, Eds.), Vol. 20, p. 91, Academic Press, New York (1967).
4. F. S. Ham, Phys. Rev. 166, 307 (1968).
5. F. S. Ham, in "Electron Paramagnetic Resonance" (Geschwind, Ed.), p. 1, Plenum, New York (1972).
6. M. Greenblatt, J. H. Pifer, B. R. McGarvey, and B. M. Wanklyn, J. Chem. Phys. 74, 6014 (1981).
7. S. H. Smith and B. M. Wanklyn, J. Cryst. Growth 21, 23 (1974).
8. J. A. Baglio and G. Gashurov, Acta Crystallogr. Sect. B 24, 292 (1968).
9. E. B. Andreeva, N. V. Kaslov, A. A. Manenkov, V. A. Milyaev, and H. U. Skirkov, Sol. Phys. Solid State 6, 1293 (1964).
10. E. Banks and M. Nemiroff, Inorg. Chem. 13, 2715 (1974).
11. M. Greenblatt and J. H. Pifer, J. Chem. Phys. 72, 529 (1980).
I2. C. Ezzfeh and R. R. McGarvfy, I. Chem. Phys. 61, 2675 (1974).
13. M. Greenblatt, P. Strobel, and J. H. Pifer, J. Chem. Phys. 74, 6580 (1981).
14. H. Schechter, J. G. Dash, G. A. Erickson, and R. Ingalls, Phys. Rev. 132, 613 (1970).
15. H. S. Sack and M. C. Moriarty, Solid State Commun. 3, 93 (1965); G. Lombardo and R. O. Pohl, Phys. Rev. Lett. 15, 291 (1965); J. A. D. Matthew, Solid State Commun. 3, 365 (1965); G. J. Dienes, R. D. Hatcher, R. Smoluchowski, and W. Wilson, Phys. Rev. Lett. 16, 25 (1966).
16. N. E. Byer and H. S. Sack, Phys. Rev. Lett. 17, 72 (1966); S. P. Bowen, M. Gomez, J. A. Krumhansl, and J. A. D. Matthew, Phys. Rev. Lett. 16, 1105 (1966).
17. R. J. Quigley and T. P. Das, Phys. Rev. 164, 1185 (1967).

[^0]: * Presented at the Symposium on the Electronic Structure and Bonding in Solids, 183rd National Meeting, American Chemical Society, held in Las Vegas, Nevada, March 30-31, 1982.

